

Sirindhorn International Institute of Technology

Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set 7

Semester/Year:	2/2015
Course Title:	Basic Electrical Engineering
Instructor:	Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site:	http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Mar 21, 5 PM

Instructions

- 1. Solve all problems. (5 pt)
 - a. Write your name and ID on the top of **every** submitted page.
 - b. For each part, write your explanation/derivation and answer in the space provided.
- 2. ONE sub-question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work carefully on all of them.
- 3. There is no need to submit (or even print out) page 1 (this cover sheet).
- 4. Late submission will be rejected.
- 5. *Write down all the steps* that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Questions

- 1) Continue from Example 5.1.7 and 5.1.9 in the lecture.
 - a) We got two equations with two unknowns v_o and v_B :

$$\frac{v_B - v_i}{R_1} + \frac{v_B}{R_i} + \frac{v_B - v_o}{R_f} = 0 \text{ and } \frac{v_o - v_B}{R_f} + \frac{v_o - A(-v_B)}{R_o} = 0.$$

Solve for v_o (in terms of R_1, R_f, R_i, R_o, A , and v_i).

b) Use the expression of v_0 derived in part (a) above to find $\frac{v_o}{v_i}$ under the following four scenarios (the first one is solved as ex.):

<i>R</i> ₁	R_{f}	A	R _i	R _o	$\frac{v_o}{v_i}$ (exact)	$\frac{v_o}{v_i}$ (approx. to five decimal places)
10 kΩ	20 kΩ	2×10 ⁵	2 MΩ	50 Ω	$-\frac{15999999800}{8000120601}$	-1.99997
10 kΩ	20 kΩ	10 ⁴	1 MΩ	1 kΩ		
10 kΩ	20 kΩ	10 ³	100 kΩ	10 kΩ		
20 kΩ	20 kΩ	10 ³	100 kΩ	10 kΩ		

2) [Alexander and Sadiku, 2009, Q5.8] Obtain v_0 for each of the op amp circuits in Figure 1.

Figure 1

3) [Alexander and Sadiku, 2009, Q5.10] Find the gain v_o/v_s of the circuit in Figure 2.

Figure 2

4) [Alexander and Sadiku, 2009, Q5.20] In the circuit in Figure 3, calculate v_o if $v_s = 0$.

Figure 3