\qquad ID: \qquad

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set 7

Semester/Year: 2/2015
Course Title: Basic Electrical Engineering
Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)
Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: Mar 21, 5 PM

Instructions

1. Solve all problems. (5 pt)
a. Write your name and ID on the top of every submitted page.
b. For each part, write your explanation/derivation and answer in the space provided.
2. ONE sub-question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work carefully on all of them.
3. There is no need to submit (or even print out) page 1 (this cover sheet).
4. Late submission will be rejected.
5. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
\qquad ID: \qquad

Questions

1) Continue from Example 5.1.7 and 5.1.9 in the lecture.
a) We got two equations with two unknowns v_{o} and v_{B} :

$$
\frac{v_{B}-v_{i}}{R_{1}}+\frac{v_{B}}{R_{i}}+\frac{v_{B}-v_{o}}{R_{f}}=0 \text { and } \frac{v_{o}-v_{B}}{R_{f}}+\frac{v_{o}-A\left(-v_{B}\right)}{R_{o}}=0 .
$$

Solve for v_{o} (in terms of $R_{1}, R_{f}, R_{i}, R_{o}, A$, and v_{i}).
b) Use the expression of v_{0} derived in part (a) above to find $\frac{v_{o}}{v_{i}}$ under the following four scenarios (the first one is solved as ex.):

R_{1}	R_{f}	A	R_{i}	R_{o}	$\frac{v_{o}}{v_{i}}$ (exact)	$\frac{v_{o}}{v_{i}}$(approx. to five decimal places)
$10 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	2×10^{5}	$2 \mathrm{M} \Omega$	50Ω	$-\frac{15999999800}{8000120601}$	-1.99997
$10 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	10^{4}	$1 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$		
$10 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	10^{3}	$100 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		
$20 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	10^{3}	$100 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		

\qquad ID: \qquad
2) [Alexander and Sadiku, 2009, Q5.8] Obtain v_{o} for each of the op amp circuits in Figure 1.

Figure 1
\qquad ID: \qquad
3) [Alexander and Sadiku, 2009, Q5.10] Find the gain v_{o} / v_{s} of the circuit in Figure 2.

Figure 2
4) [Alexander and Sadiku, 2009, Q5.20] In the circuit in Figure 3, calculate v_{o} if $v_{s}=0$.

Figure 3

